Le son des images #IA
Des chercheurs de l’Université du Michigan ont mis au point une technique absolument dingue qui permet de générer des spectrogrammes ayant l’allure d’images capables de produire des sons qui leur correspondent lorsqu’ils sont écoutés. Ils appellent cela des « images qui sonnent ».
Leur approche est simple et fonctionne sans entraînement spécifique. Elle s’appuie sur des modèles de diffusion text-to-image et text-to-spectrogram pré-entraînés, opérant dans un espace latent partagé. Durant le processus de génération, les deux modèles “débruitent” des latents partagés de manière simultanée, guidés par deux textes décrivant l’image et le son désirés.
Le résultat est bluffant ! Ça donne des spectrogrammes qui, vus comme des images, ressemblent à un château avec des tours, et écoutés comme des sons, font entendre des cloches. Ou des tigres dont les rayures cachent les motifs sonores de leurs rugissements.
Cette prouesse révèle qu’il existe une intersection entre la distribution des images et celle des spectrogrammes audio et en dépit de leurs différences, ils partagent des caractéristiques bas niveau comme les contours, les courbes et les coins. Cela permet de composer de façon inattendue des éléments visuels ET acoustiques, comme une ligne qui marque à la fois l’attaque d’un son de cloche et le contour d’un clocher.
Pour recréer cette méthode chez vous, il “suffit” d’aller sur le Github du projet et de suivre les instructions techniques.